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ABSTRACT

COALITION ROBUSTNESS OF MULTIAGENT SYSTEMS

Nghia C. Tran

Department of Computer Science

Master of Science

Many multiagent systems are environments where distinct decision-makers com-

pete, explicitly or implicitly, for scarce resources. In these competitive environments, it

can be advantageous for agents to cooperate and form teams, or coalitions; this coopera-

tion gives agents strategic advantage to compete for scarce resources. Multiagent systems

thus can be characterized in terms of competition and cooperation. To evaluate the effec-

tiveness of cooperation for particular coalitions, we derive measures based on comparing

these different coalitions at their respective equilibria.

However, relying on equilibrium results leads to the interesting question of stabil-

ity. Control theory and cooperative game theory have limitations that make it hard to apply

them to study our questions about stabililty and evaluate cooperation in competitive envi-

ronments. In this thesis we will lay a foundation towards a theory of coalition stability and

robustness for multiagent systems. We then apply this condition to form a methodology to

evaluate cooperation for market structure analysis.
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Chapter 1

Introduction

1.1 Motivation

Many multiagent systems are environments where distinct decision-makers compete, ex-

plicitly or implicitly, for scarce resources. For example, different species in various ecosys-

tems compete for food, water, sunlight, and basic survival. In political systems, people

wage wars to control resources by seizing land, food, labor, or destroying infrastructure.

Likewise, economic systems also exhibit competition, as firms struggle for market share by

advertising, supplying better products and services, or even through unfair practices, such

as creating barriers of entry or stealing trade secrets.

In these competitive environments, since individual agents have limited influence

to accomplish their objectives, it can be advantageous for agents to cooperate and form

teams, or coalitions; this cooperation gives agents strategic advantage to compete for scarce

resources. In ecology such cooperation is called symbiosis, illustrated by the cooperative

relationship between leaf-cutter ants, fungi in the Lepiotaceae family, and a particular bac-

terium which the ants use as a type of antibiotic to protect the fungi. The ants cut leaves

to make food for the fungi and at the same time use a certain bacterium to kill molds that

endanger the fungi. In exchange, the fungi, which now only grows in such ant colonies,

produces food for the ant in specialized hyphal-tips known as gongylidia. Queen-ants also

take the fungi seed with them to form other colonies. Politically, cooperation manifests

in the form of strategic alliances. After West Germany joined the North Atlantic Treaty

1
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Organization (NATO), the Warsaw Pact was formed in order to balance the competition.

Economic systems also show cooperation at company and corporation levels, as merger

and acquistions can be carried out to put the joining parties in an overall better econom-

ical position. Multiagent systems thus can be characterized in terms of competition and

cooperation.

It is difficult, however, to evaluate the effectiveness of cooperation for particular

coalitions. Is a coalition successful because of cooperation, or in spite of it? Addressing

such issues can be useful in a variety of settings. For example, evaluating the cooperative

influence between product lines controlled by a firm and a potential aquisition target is very

useful to 1) the Department of Justice as to check whether a certain merger could result in

a strong firm that can dominate the market, or 2) executives of firms as to structure their or-

ganizations into strongly cooperative units. In order to perform this kind of evaluation, one

requires measures of cooperation relative to a particular competitive environment. In this

thesis, we derive measures based on comparing these different coalitions at their respec-

tive equilibria. However, relying on equilibrium results leads to the interesting question of

stability.

Control theory is rich with stability results, yet there is not much focus for coalition

structures. Cooperative game theory, on the other hand, is focused on the study of stable

coalitions known as the core. However, it does that without regard to how the coalitions

are structured, or in other words the coalitional hierarchy. For examples, the classical

formulation in cooperative game theory would assign a score to the strategic position of

the Warsaw Pact without considering whether NATO was formed or disintegrated. These

limitations make it hard to apply pure control theory or cooperative game theory to study

our questions about stabililty and evaluate cooperation in competitive environments.

In this thesis we will lay a foundation towards a theory of coalition stability and

robustness for multiagent systems. After showing some practical applications that motivate

the theory, we will build up our results based on ideas from control theory and cooperative

2
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game theory to lead to a stability robustness condition. We then apply this condition to

form a methodology to evaluate cooperation for market structure analysis.

1.2 Organization of the Thesis

This thesis started out as a mentoring project sponsored by the Office of Research and

Creative Activities at Brigham Young University. We explored the value of cooperation of

different product lines within firms of a given market in [19]. Following [19] we then used

the value of cooperation to cluster an organizational structure into meaningful divisions

to maximize the value of cooperation within each unit [17]. Then in [18] we explored

and solved the condition for stability of those systems, while also introducing the notion

of coalition robustness in multiagent systems. Later works in [4] are also partially-based

on our work in the said papers. Our work related to the problem of this thesis are also

published in [16] and [20].

The following chapters correspond to [19], [17] and [18] respectively with some

minor editing to suite a thesis format. We want to keep the chapters self-contained as much

as possible, and in doing so we expect some redundancy as an acceptable trade off.

Chapter 2 formulates and discusses the concept of the value of cooperation, as well

as giving some examples to emphasize the key concepts. Chapter 3 shows how the value of

cooperation can be applied to analyze industrial organizational structures. It also builds and

illustrates a simulation of such application. Chapter 4 generalizes from the formulation of

Chapter 2 by introducing new concepts and definitions and deriving lemmas and theorems

to solve the stability robustness problem.

Chapter 5 summarizes the ideas and adds one additional extension of the earlier

results. Then we conclude the thesis by showing a plan of how our future work can proceed.

3
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Chapter 2

The Value of Cooperation Within a Profit-Maximizing Organization 1

This chapter derives a method for evaluating the cooperative influence among the

product lines controlled by a firm. The idea is to let the profit maximizing dynamics of

a given market structure define the value function for a particular coalition game. With

this idea, we may aid anyone who needs to know about a product’s place in the product

network. For business managers, this means they can know the products their business

offers which contribute to a greater whole, as opposed to those product lines which may be

sold off with minimal impact. They may also discover which product lines would be most

advantageous for their business. Given any set of products inside or outside the business,

we may calculate the value of this set (with profit maximization as the objective).

Our method is also useful for the antitrust division of the Department of Justice.

They are interested in maximizing total social welfare in a market by protecting market

competition. To do this, they attempt to measure the control a particular company has on

the market and take appropriate measures. Their preferred measure of the market power of

the company is the Herfindahl-Hirshman index (IHH) [15], the sum of the squares of each

firm’s market share, given by

IHH =
N

∑
i=1

s2
i (2.1)

This measure, however, relies on legal definitions of particular markets and focuses on a

computation of market share. Market share, however, has been shown to be a weak indica-
1This part appeared as [19] in the proceeding of the Joint Conferences on Information Sciences 2005, Salt

Lake City, Utah . It also appeared partially as [20] in the proceedings of the IEEE International Conference
on Control Applications 2005, Toronto, Canada.

5
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tor of market power [6]. A more direct measure of market power that is insensitive to legal

definitions of market boundaries but highly sensitive to the economics of the underlying

product network would make a significant impact on antitrust efforts. The value of cooper-

ation a firm is able to realize within a given economic environment is a step in the direction

of computing market power directly. This work draws heavily from the theory of industrial

organization and coalition games [15], [3], [10], [14], [8]. The most closely related work

to our study is recent work on merger simulations. One paper [5] describes how the impact

of a proposed merger can be computed by evaluating the post-merger equilibrium prices.

The paper considers common functional forms of demand functions, and indicates how to

conduct the merger simulation in each case. The value of cooperation proposed here is

found through a kind of “reverse” merger simulation that explores the impact of splitting

the firm into its constituent economic units to determine the value it is realizing by unifying

the objectives of these basic units.

The next section introduces the dynamic framework motivating the profit gained

at equilibrium as a viable value function. A coalition game is then formulated using this

value function, and the Value of Cooperation and Relative Value of Cooperation are then

introduced as measures on this game. A simple example is then provided to illustrate the

ideas, and the conclusion and future work summarizing the work follow.

2.1 Profit Maximizing Dynamics

Consider a market, M , of N products. Without loss of generality, give these products

an arbitrary order and integer label so that M = {1,2, ...,N}. Let p ∈ RN be the vector

of (non-negative) prices for these N products, and let q : RN → RN be the (non-negative)

demand for these products at prices p.

A firm, F is a subset of the N products in the market, F ∈ 2M . This implies that the

firm controls the production and distribution of the products assigned to it. Most impor-

6
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tantly for our analysis, since we consider a Bertrand market model [15], this implies that

the firm may set the prices of the n = |F | products assigned to it.

We suppose that the products of the market are partitioned between m firms. This

implies that no two firms control the same product, Fi∩Fj = /0 ∀i 6= j and that the union of

all products assigned to the m firms composes the entire market,
⋃m

i=1 Fi = M .

Let c j(q j), j = 1, ...,N be the cost of production of q j units of product j. The profit

of the ith firm, is then given by

πi = ∑
j∈Fi

[q j(p)p j− c j(q j(p))] (2.2)

A profit-maximizing firm under the Bertrand model of market behavior will tend to change

its prices to maximize its short-term profit. We model this behavior by assuming that the

firm will evolve the prices of its products in the direction of maximally improving its profits.

That is, if product j belongs to firm i, then we expect the firm to evolve the price of product

j as
d p j(t)

dt
=

∂πi(p)
∂ p j

∣∣∣∣
p(t)

(2.3)

where p(t) is the pricing vector for the entire market at time t.

Notice that these dynamics suggest that if the partial derivative of profits is negative

with respect to the price of product j, that the firm should decrease the price of product j.

This is in the direction of improving profits. Likewise, if the partial derivative were positive,

the firm would increase the price of product j to improve profits. When the partial derivative

is zero, the motivation is to hold the price at this locally profit-maximizing position.

Reordering the N market products so that each firm’s products are grouped together,

and letting ni be the number of products controlled by firm i, we then can partition the

pricing vector into components associated with each firm. If every firm in the market is

7
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assumed to be profit maximizing, this yields the following market dynamics:



ṗ1(t)
...

ṗn1(t)

ṗn1+1(t)
...

ṗn1+n2(t)
...

ṗ1+∑
m−1
i=1 ni

(t)
...

ṗN(t)



=



(∂π1/∂ p1)(p(t))
...

(∂π1/∂ pn1)(p(t))

(∂π2/∂ pn1+1)(p(t))
...

(∂π2/∂ pn1+n2)(p(t))
...

(∂πm/∂ p1+∑
m−1
i=1 ni

)(p(t))
...

(∂πm/∂ pN)(p(t))



(2.4)

where the dot notation ṗ(t) is used to represent d p(t)/dt. Notice that if the market system

(2.4) has an equilibrium, such a pricing vector peq would represent prices from which no

firm can improve its profits by unilaterally changing the prices over which it has control.

Under certain technical conditions such an equilibrium can be shown to exist. Moreover,

this equilibrium can often be shown to be asymptotically stable, in the sense that any pricing

vector p(0) will converge to the equilibrium peq as t→ ∞.

2.2 The Firm as a Coalition in a Multi-Coalition Environment

Under the assumption that the market dynamics are stabilizing, we expect price perturba-

tions to re-equilibriate2. In this context, it is convenient to simplify the problem by only

considering the profits of the firms at equilibrium. These profits define a payoff function

reminiscent of those used to define coalition games.

2This expectation is addressed in chapter 4.

8
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Let v(Fi) = πi|p=peq
be the payoff or profit of firm i at the market equilibrium prices

peq. In this way the firm may be thought of as a coalition of ni players in an N-player coop-

erative game (N = ∑ni). Each player is a one-product company that completely manages

the production, distribution, and pricing decisions for its product. The firm, then, is a con-

federacy of these one-product companies that works together to maximize their combined

profits or payoffs.

The theory of coalition games studies the behavior of such coalitions once the pay-

off function is defined for every possible coalition. The idea is that any given coalition Fi

yields a well-defined payoff v(Fi), and then a number of questions can be explored regard-

ing how to distribute the payoff among the members of the coalition, etc.

Our situation is different because the payoff to a given firm doesn’t just depend on

the products it controls, but also on the market structure of the products outside the firm.

For example, consider a 10-product market and a three product firm in the market. The

payoff to the firm does not just depend on the prices of the three products it controls, but

also on the prices of the other seven products. The profit-maximizing equilibrium prices

of these other seven products, however, may be set differently depending on whether they

belong to a single firm or whether they are controlled by seven different companies. Thus,

the payoff to the three-product firm depends on the entire market structure.

Coalition game theory addresses such situations by considering partition systems

and restricted games. For our purposes, it is sufficient to partition the N products of M

into m firms and then assume that this structure is fixed outside of the particular firm that

we are studying. This enables us to work with a well defined payoff function induced by the

profit-maximizing dynamics of firms within the market without eliminating the multiple-

coalition (i.e. multiple firm) cases of interest.

9
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2.3 Value of Cooperation

To quantify the value of organizing a group of one-product companies into a single firm,

we need to compare the profits the firm receives if it sets its prices as if each of its products

were independent companies with those it realizes by fully capitalizing on cooperation

between the products.

More precisely, let peq be the profit-maximizing equilibrium prices for the given

market structure. In contrast, consider the new profit maximizing equilibrium prices

achieved without cooperation if Fi were divided into its constituent one product companies

and each independently optimized their prices. Let this second set of equilibrium prices

serve as a basis for comparison, or reference, and be denoted pre f . We can then define the

following measure.

Definition 2.1. The Value of Cooperation (VC) of a firm Fi in market M with structure

S = F1,F2, ...,Fm is given by:

VCre f (Fi,S) = πi|peq
− πi|pre f

(2.5)

This VC measure captures precisely the value realized by the firm due to cooper-

ation within its organization. Note that the VC measure is always non-negative since the

cooperating firm can always recover at least the non-cooperating, or reference, profits by

simply setting the prices it controls in peq to those of pre f .

As defined, the VC measure carries units of dollars and reflects a kind of absolute

dollar-value of cooperation within the firm, thus making comparisons difficult. We, there-

fore, define a ”relative” Value of Cooperation by normalizing VCre f by the equilibrium

profits as follows.

10
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Definition 2.2. The Relative Value of Cooperation (RVC) of a firm Fi in market M with

structure S = F1,F2, ...,Fm is given by:

RVCre f (Fi,S) =
πi|peq

− πi|pre f

πi|peq

(2.6)

This RVC measure is naturally interpreted as the percentage of profits due to co-

operation within the organization. It is bounded between zero and one, and enables direct

comparison among firms of different sizes. By simply replacing the equilibrium and refer-

ence prices in the above definitions with the equilibriated profit-maximizing prices of the

market structures being compared, one can easily use the thus modified VC and RVC to

analyze the relative values of different organizational structures within a single firm. This

is a natural application of the above framework, where the market is a firm and the firms

are its organizational divisions.

Sometimes we may be interested in measuring the value of cooperation between

structures other than the current market structure and the reference structure. This could

be the case when considering mergers between firms, or when management is considering

selling off a piece of the firm. In such cases it is easy to extend the definitions of VC

and RVC by simply replacing the equilibrium and reference prices with the equilibriated

profit-maximizing prices of the two market structures being compared.

It is instructive to contrast the VC and RVC with other measures used to characterize

cooperative games. Hart and Mas-Colell defined a measure, called the potential, P, that

computes the expected normalized worth of the game i.e. the per-capita potential, P/N,

equals the average per-capita worth (1/m)∑i(πi)/(|Fi|). Given a market structure, this

measure characterizes the expected profit of an average-sized firm (where size is measured

with respect to the number of products the firm controls) in the market, even if such a firm

does not actually exist.

11
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Moreover, the potential has been connected to another measure, called the Shapley

value, Φ j , which yields the marginal contribution of each product in the market. This

measure characterizes how the payoff of a coalition should be divided between members

of the team. In both cases, Shapley value and the potential do not suggest anything about

the intrinsic benefit of forming coalitions in the first place.

The Value of Cooperation, VC, and Relative Value of Cooperation, RVC, on the

other hand, capture the natural significance for organizing production into multi-product

firms. Nevertheless, these measures do not yield any information about how the profit of a

firm should be efficiently invested into each of the firm’s constituent production lines. Thus,

the measures are inherently different from the potential or Shapley value of the coalition

game that focus more on the value of a member of a coalition to the group rather than the

value of the coalition as a whole.

Example 2.1. To illustrate the point, consider a two product economy with linear demand

given by q1(t)

q2(t)

=

−3.5 −1

−3 −2


p1(t)

p2(t)

+

100

100

 (2.7)

Suppose that the unit production cost of each product is c1 = 10,c2 = 10. If we consider

a market structure where each product is produced by an independent company, the profit

function for each company becomes

π1(t) = q1(t)(p1(t)− c1)

=−3.5p2
1− p1 p2 +135p1 +10p2−1000 (2.8)

π2(t) = q2(t)(p2(t)− c2)

=−2p2
2−3p1 p2 +30p1 +120p2−1000 (2.9)

12
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Figure 2.1: Two firm price trajectory and profit function.

Taking the partial derivatives of each profit function with respect to the appropriate pricing

variable, we find the profit-maximizing market dynamics to be:

d p1(t)
dt

d p2(t)
dt

=

−7 −1

−3 −4


p1(t)

p2(t)

+

135

120

 (2.10)

Figure 2.1 shows how the two-firm dynamics drive an initial pricing vector to a

profit-maximizing equilibrium. This equilibrium price is

pre f =

16.8

17.4


and the associated equilibrated profits are π1 = 161.84, and π2 = 109.52.

13
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Figure 2.2: One firm price trajectory and profit function.

Now, consider a market structure where both products are controlled by the a same

firm. In this case, the firm’s profit function becomes

π(t) = q1(t)(p1(t)− c1)+q2(t)(p2(t)− c2)

=−3.5p2
1 +165p1−4p1 p2 +130p2−2p2

2−2000 (2.11)

With this market structure, the firm adjusts the prices of both products to optimize

the same objective. These new dynamics become:

d p1(t)
dt

d p2(t)
dt

=

−7 −4

−4 −4


p1(t)

p2(t)

+

165

130

 . (2.12)

14
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Figure 2.2 shows how the single-firm dynamics drive an initial pricing vector to a

profit-maximizing equilibrium. The new equilibrium price is given by

peq =

11.67

20.83

 (2.13)

and the associated equilibriated profits are πeq = 316.667. The value of cooperation in this

example thus becomes

VC = πeq− (π1 +π2) = 45.3067

RVC = 0.1431 (2.14)

This suggests that in this market, just under 15% of the profits of the two-product firm are

the direct result of it’s interfirm cooperation.

2.4 Conclusion

This chapter explored quantitative measures to calibrate the value of cooperation within a

specific firm in a given market. The idea is to assume profit-maximizing dynamics among

the firms within the market and compare equilibrium profits in two different scenarios. The

first scenario considers the firm as it is, as a single economic entity with a unified objective

and exhibiting full cooperation between its various economic units. The second scenario

considers splitting the firm into its constituent economic units and computing market equi-

librium prices if these units were to fail to cooperate and acted completely independently

out of self interest. The difference between the cooperative profits of the first scenario and

the aggregate profits of the independent units of the second scenario define a measure we

call the Value of Cooperation, VC, of the firm in its current market environment. A sec-

ond related measure is the Relative Value of Cooperation, RVC, which normalizes the VC

15



www.manaraa.com

measure by the cooperative profits to yield a unitless metric that reveals the percentage of

profits derived from cooperation within the firm.

Quantifying the value of cooperation is a first step in understanding how firms exert

market power in their respective environments. This information is important for both

managers, who hope to leverage the information to better lead their organizations, and

regulators, who want to monitor the impact of corporate decisions on social welfare. The

following chapters, especially chapter 4, will concretely establish the relationship between

the VC and RVC measures and market power and indicate how to compute approximations

to these metrics from readily available market.

Acknowledgements: We’d like to thank David Sims for his thoughtful discussions

on the nature of economic systems and the meaning of cooperative value.
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Chapter 3

Cooperation-based Clustering for Profit-maximizing

Organizational Design 1

This chapter shows how the notion of relative value of cooperation (RVC) that we

discussed in Section 2.3 can be used to analyze the relative economic advantage afforded

by various organizational structures of a firm. The RVC measure does not consider hu-

man factors, but simply reflecting the value of cooperation of a firm’s product lines. The

value of cooperation is computed from transactions data by solving a regression problem

to fit the parameters of the consumer demand function, and then simulating the resulting

profit-maximizing dynamic system under various organizational structures. A hierarchi-

cal agglomerative clustering algorithm can be applied to reveal the optimal organizational

substructure.

3.1 Introduction

Analyzing the impact of organizational structure on the performance of profit-maximizing

organizations is a difficult task for business managers. Yet, informed design decisions are

essential to long-term profitability. While these decisions are often ad hoc, today’s large

volumes of data make more systematic analyses possible. The key concept in such analyses

is that of the relative value of cooperation (RVC) experienced by a firm, which captures the

1This part appeared in the proceedings of the International Joint Conferences on Neural Networks, Van-
couver BC as [17].
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percentage of a firm’s profits due strictly to the cooperative effects among the goods it sells

[19].

Such a measure provides the scientific backing for sound organizational design de-

cisions. For example, if a firm can identify which of its products have strong synergies

with others, it can organize to ensure that decision makers of related products work closely

together. This may include physically co-locating entities where interaction adds strong

value to the organization, or it may result in decentralization when cooperation adds little

value. Similarly, if a firm identifies pieces of its business that add little cooperative benefit

to the organization as a whole, it may consider selling off these subunits. A subunit with a

healthy balance sheet may sell for a high price without adversely affecting the firm’s value

of cooperation. On the other hand, the firm may pursue a different strategy of retaining its

decoupled subunits but use the value of cooperation to identify an acquisition that strongly

couples their mutual benefit. Thus, divisions of a firm that are quite independent may be

cooperatively coupled through the acquisition of another business with the right coopera-

tive effects. For example, a firm with two distinct independent divisions that have no value

of cooperation may acquire another business unit that not only adds value of cooperation

with each division, but does so in a way that the total business becomes tightly integrated.

Moreover, the firm may identify an acquisition candidate that is struggling on its own, and

thus is inexpensive, but brings the right cooperative effects to the organization to offset the

risk of acquiring a struggling business. The value of cooperation thus becomes the lens

through which a firm can better identify valuable opportunities in the market environment,

or costly “baggage” in its own organizational structure.

In this chapter, we discuss the use of the Value of Cooperation inspired by the

theory of industrial organization and coalition games [15], [3], [10], [14], [8]. Essentially,

the profit maximizing dynamics of a given organizational structure define the value function

for a particular coalition game. Researchers in [5] describe how the impact of a proposed

merger can be computed by evaluating the post-merger equilibrium prices. They consider
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common functional forms of demand functions and indicate how to conduct the merger

simulation in each case. Our value of cooperation is computed through a kind of “reverse”

merger simulation that explores the impact of splitting the firm into its constituent economic

units to determine the value it is realizing by unifying the objectives of these basic units. We

are then able to use this measure to drive a hierarchical agglomerative clustering algorithm

in order to reveal the organizational substructure defined naturally from the cooperative

effects of the global product network.

3.2 VC-based Clustering

Equipped with the value of cooperation as the measure of productive interaction between

products, a firm may consider its internal organization and cluster its product to maximize

the value of cooperation, indicating which decision makers in the organization should work

together in setting prices, and which can work more independently. Knowing where coop-

erative value resides within an organization is the critical first step in exploring it.

We begin by describing how one may compute a firm’s value of cooperation from

data. The algorithmic process involves the following three steps:

1. Fit demand model from transactions data. This can often be accomplished through

standard regression techniques. To obtain good estimates of the model parameters,

however, it is important that the data be sufficiently “exciting”. This can often be a

challenge if prices have remained relatively constant or have only been changed in a

very structured way (e.g. 20% off everything sales.)

2. Build corresponding profit-maximizing dynamic system. This step involves con-

structing the firm’s profit function for each product in its offering. Importantly, this

assumes knowledge of the total handling costs associated with selling each product,

which information may often have to be estimated at best. Moreover, our initial re-

sults assume that this cost structure does not change with organization structure, i.e.,
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although the economies of scale associated with selling more of a product can be

easily accommodated, no cost benefit across product lines is built into the existing

model2.

3. Compute equilibrium for given organizational structures. With different assumptions

about which products group together, the profit maximizing dynamics are altered

yielding a new equilibrium point for the system.

A natural extension of the above algorithm would be to automate step 3 in such

way that the organizational structure resulting in the largest value of cooperation is found.

In other words, one is interested in finding the k clusters of n products for which the total

value of cooperation is maximized for all k from 1 to n. We propose to do this through the

use of the value of cooperation within a hierarchical agglomerative clustering framework.

VC-based hierarchical agglomerative clustering starts from the reference structure,

where all products are assumed to act independently. Then, the two products which exhibit

the strongest value of cooperation are merged, and the process is repeated, decreasing the

total number of clusters by one until all of the firms products are finally merged into a single

organizational structure. The hierarchical nesting adds a natural constraint to the problem,

which yields a product hierarchy with a clear organizational interpretation.

The real novelty of our approach comes from its use of the profit-maximizing dy-

namics to define the resulting clusters. A typical approach to economic-driven clustering

may compute the same demand function from data, expand it in a Taylor series around

the market equilibrium, and then consider the first order terms as defining a graph over

products, i.e., the product network. Various approaches to clustering this graph might then

be considered. The approach discussed here, however, is a radical departure from such

approaches by using the demand function to characterize a dynamic system, and then al-

lowing this dynamic system to define clusters over the product network.

2This limitation is an important focus of future work since synergistic costs can play as important a role
in a total cooperation as synergistic sales. Nevertheless, the current work showing effects of synergistic sales
demonstrates the key idea underlying cooperation-based analysis.
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The use of VC-based hierarchical agglomerative clustering is best highlighted

through an example. The following example will formulate the problem using simulated

data.

Example 3.1. In this simple example, a firm managing 15 products is considered. The

demand function is taken to have the form: q = Ap+B where q ∈ Rn, p ∈ Rn, and qi, pi ≥

0 ∀ i ∈ {1, ...,n}.

This linear structure may have been fit directly from data, or it may be the result

of linearizing another demand function around a nominal set of prices. Considering the

reference structure where every product sets its price independently to maximize its own

profit, each constituent product system has a profit function given by:

πi = qi(p)(pi− ci) (3.1)

where ci ∈ R+ is the marginal cost of the ith product. Note that a fixed cost could

be added to the expression without affecting the results.

The vector B in the demand function is given by B = 1130 330 330 1130 1030 1030 1930 . . .

. . . 330 2130 1125 2130 1930 −150 300 330


T

and the cost vector

is given by C =

 110 130 130 110 110 110 110 . . .

. . . 130 110 120 110 110 120 120 130


T

.

Note that the relative strength of the own-price elasticities of various products is

visible in the strongly diagonal structure of matrix A (Figure 3.1). In spite of this feature,

Figure 3.2 demonstrates that over 50% of the firms profits result strictly from the coopera-

tive effects between products.

The relative value of cooperation increases sharply as the first few products are

grouped into their respective clusters. Once a critical clustering is achieved, however, no

improvement in the value of cooperation is observed through subsequent centralization.

This indicates that these sets of products are fairly independent, decoupled with respect to
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Figure 3.1: The A matrix of the Demand Function.
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Figure 3.2: RVC vs. Product Groupings
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Figure 3.3: VC-based Hieararchical Agglomerative Clustering of a 15 Product Firm. The
highlighted row shows how the clusters are formed when there are exactly 5 clusters. This
formation is interesting because as shown in Figure 3.2, no additional gain in the Value
of Cooperation can be achieved by reducing the clusters. This formation consists of two
4-product firms, one 3-product firm, and two 2-product firms.
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the market demand function. Cooperation-based clustering identifies these groups, even

when they are not apparent from the market demand function directly.

The result of the cooperation-based clustering is shown in Figure 3.3. Each row

indicates a set of clusters, beginning with 15 single-product clusters and ending with a

single cluster of all the products. An interesting aspect of this clustering is apparent in the

analysis of this figure with the RVC plot. We note that once the products have been grouped

into five clusters, no more value of cooperation is derived through further clustering. This

indicates that the firm is operating at the intersection of five rather independent markets, a

fact that is not readily apparent from inspection of the demand function (see Figure 3.1).

3.3 Conclusion

We have illustrated the use of the value of cooperation for product clustering in the con-

text of optimal organizational design through the use of the value of cooperation within

a hierarchical agglomerative clustering framework. VC-based hierarchical agglomerative

clustering starts from the reference structure, where all products are assumed to act inde-

pendently. Then, the two products which exhibit the strongest value of cooperation are

merged, and the process is repeated, decreasing the total number of clusters by one until

all of the firms products are finally merged into a single organizational structure. The hier-

archical nesting adds a natural constraint to the problem, which yields a product hierarchy

with a clear organizational interpretation.

A real-world example would be very helpful in highlighting and validating our

cooperation-based clustering idea. We would like to direct our future research to imple-

menting the cooperation-based clustering framework to business. Such implementation

would also highlight some of the challenges that may have been overlooked in our formu-

lation.
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Chapter 4

Coalition Robustness of Multiagent Systems1

Business networks provide one of the most compelling environments to study

the conflicting effects of competition and cooperation on multi-agent dynamical systems.

While firms engage various merger and divestiture strategies to create the desired coop-

erative environment that enhances their market power, governmental regulatory agencies

enforce antitrust measures that protect competition as a means to limit the market power

of these organizations. Merger simulation has subsequently evolved in recent years as a

mechanism to study the impact of different organizational structures on the market. Nev-

ertheless, typical economic models can often lead to competition dynamics that arbitrar-

ily lose stability when considering different organizational structures. This work provides

stability robustness conditions with respect to coalition structure for profit-maximizing dy-

namical systems with network demand, and partially convex utility. In particular, we show

that stability of the coalition of all agents is sufficient to guarantee stability of all other

coalition structures. These conditions are then leveraged to provide a systematic methodol-

ogy for estimating a rich variety of demand systems that guarantee sensible stability results

regardless of the structure of cooperation in the marketplace.

1This part appeared in the proceedings of the American Control Conference 2008, Seattle WA as [18].
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4.1 Firms, Market Power, and Merger Simulation

One of the most well-studied multi-agent systems is the marketplace. Market dynamics are

governed by competition, nevertheless one of the most interesting features of the market is

the spontaneous emergence of cooperation structures we call firms. Firms represent coali-

tions of agents that offset the computational limitations of individual agents to better com-

pete for scarce resources. They orchestrate policies that attempt to drive profit-generating

dynamics in the face of considerable uncertainty, both from the consumer market and from

the competitive forces of other firms.

One way firms cope with market uncertainty is through growth. As firms deploy

successful policies, they acquire capital that enable them to attract the cooperation of more

agents in the marketplace. This can happen organically through the hiring of employees and

the natural expansion of the firm’s existing operations, or it can happen suddenly through

mergers and acquisitions. Either way, such growth attempts to mitigate uncertainty by

either entrenching the firm in the market niche known to have been previously successful, or

by offsetting risk by diversifying the types of products or services the firm uses to compete

for profits.

As firms generate wealth, they distribute a portion of it to their stake holders, who

then engage the marketplace as consumers or investors of one kind or another. The ability

of consumers to translate this wealth into an improved quality of life, however, depends

significantly on the balance of power between firms in the marketplace. When firms are

too strong, they do not have the incentive to innovate, and they can restrict the flow of

existing goods and services to consumers unless premium prices are paid. When firms are

too weak, they do not have the ability to innovate, nor do they generate the wealth their

stake holders might otherwise have had to participate more fully as consumers or further

investors in the marketplace. As a result, governments control the growth and strength of

firms, either by stopping proposed mergers or by forcing firms to divide. This maintains
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competition as an effective force to limit the market power of firms, and it ideally creates

resonance between the welfare of consumers and the welfare of investors that fuel growth.

At the heart of both the firm’s growth strategy and the government’s regulation

strategy, then, lies the ability to measure a firm’s market power. In 1997 the US Department

of Justice and the Federal Trade Commission’s released guidelines governing the regulation

of mergers within the United States [1]. This, in turn, precipitated growing interest in the

use of “merger simulations” to estimate the effects of proposed mergers or acquisitions

[12], [13], [22], [2] and [5].

Merger simulations predict post-merger prices based on a demand model of the

relationship between prices charged and quantities sold by the firms under investigation in

the relevant market. Assumptions or models about supply issues are also incorporated into

the simulation. Under a Bertrand model of pricing, every firm sets the prices of its brands

to maximize its profits. Equilibrium results when no firm can unilaterally change its prices

to improve its profits. Simulations compare pre-merger prices and profits with post-merger

prices and profits to analyze the impact of the merger. “Reverse” simulations compare

prices and profits of an existing firm with those resulting from the division of the firm into

constitutive components, thereby measuring the “Value of Cooperation” achieved by the

strategic positioning of the firm as the coalition of those particular components within the

context of the larger market [19], [17], and [20].

In this way, Value of Cooperation can be viewed as a quantification of market power,

and merger simulation can be thought of as a Value of Cooperation measurement on the

post-merger firm. The presence of market power alone, however, is not necessarily illegal,

nor is it sufficient to give the firm monopolistic power, as the firm would also need to

create barriers of entry to prevent new firms from competing. Likewise, there may be

other measures used to quantify the impact of market structure or industrial organization

on market conditions. Nevertheless, such measures typically compare a property of an
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equilibrium of one market structure with that resulting from a different market structure,

and are thus comparative static analyses that typically ignore dynamic issues.

Often, however, the demand models used in such simulations can lead to unstable

equilibria, or even conditions where no equilibria exist at all for some market structures

[5]. Such results are generally not the foreshadows of pending market doom should the

right conspiracy be formed, but rather are simply dynamic limitations resulting from math-

ematical technicalities of the these models. None of the demand models typically used in

economics, i.e. linear, log-linear (constant elasticity), logit, AIDS, and PCAIDS, guarantee

the existence and stability of equilibria for all possible market structures.

Viewing the marketplace as a profit-maximizing multi-agent dynamical system

(Section 4.2), this work resolves these issues by providing stability robustness conditions

with respect to coalition structure for such systems when these systems have a particular

network demand structure (Section 4.3). These conditions are then leveraged to provide

a systematic methodology for empirically estimating a rich variety of AIDS-like demand

systems from market data, using standard convex-optimization tools, that guarantee sensi-

ble stability results regardless of the structure of cooperation in the marketplace (Section

4.4).

4.2 Markets as Multi-Agent Systems

Consider a market consisting of n products, each produced and controlled by a single prod-

uct division. These product divisions are the constitutive agents in our multi-agent system,

N , and they are arbitrarily ordered and numbered 1 to n. Following a Bertrand model of

pricing, each agent has complete authority and control to price its product as it sees fit. The

prices for all the products are public knowledge, known at any given time by all the agents,

and denoted by the vector x ∈ Rn. For convenience, we will assume that the prices are in

units relative to the unit cost of production for each product. That is, xi is the markup for

product i.
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We suppose that the aggregate effect of consumers in the market is given by a de-

mand function, q(x) : Rn→Rn, which characterizes how the quantity sold for each product

varies with prices. Note that the demand, qi(x) : Rn→R, for product i depends, in general,

not only on its own price, but on the prices of all the other products as well.

Each agent is equipped with a utility function that scores its reward as a function

of the decisions of all the agents in the system. This utility function is a component of the

market utility and is given by each product division’s profits:

Ui(x) = xiqi(x). (4.1)

A firm, F , is a coalition of agents, represented as a subset of N . We allow the

market to coalesce into m ≤ n firms, where every agent belongs to one and only one firm.

Thus, the market structure, or industrial organization, F = {F1,F2, ...,Fm}, is a partition of

N . We will write F−1(i) for the firm to which agent i belongs.

We associate with each firm an objective or profit function given by the sum of the

utility functions of the agents belonging to the firm,

UF(x) = ∑
i∈F

Ui(x) = ∑
i∈F

xiqi(x). (4.2)

By associating with a firm, an agent agrees to adjust the prices of its product to maximize

the total profits or objective of the firm, rather than simply maximize its own utility. Thus,

all agents belonging to the same firm adopt a common objective and effectively surrender

their pricing authority to the firm, allowing the firm to lose money by underpricing in one

division in order to induce a greater demand and profit in another division.

Each agent therefore changes its price in the direction of the gradient of the objec-

tive of the firm to which it belongs;

ẋi =
∂UF

∂xi
(x) =

∂ [∑i∈F Ui]
∂xi

= ∑
i∈F

∂Ui

∂xi
(x). (4.3)
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Substituting from (4.1) for the profit structure of an agent’s utility and writing them in

vector notation, these dynamics become

ẋ = VF (x) =
[
DF

(
JT

q (x)
)]

x+q(x), (4.4)

where Jq(x) is the Jacobian of the function q(x), AT denotes transpose of a matrix A, and

DF (A) is defined as: a) di j = ai j if j ∈F−1(i), and b) di j = 0 otherwise. Thus, if F =

{(1,2),3} and A were given by

A =


1 2 3

4 5 6

7 8 9

 , then DF (A) =


1 2 0

4 5 0

0 0 9

 .

Given a market structure and a demand function, Equation (4.4) thus represents the profit-

maximizing dynamics of the multi-agent system and becomes the central focus of our anal-

ysis.

Our stability robustness problem, then, is to find conditions under which we can

guarantee existence, uniqueness and stability of the equilibrium of Equation (4.4) for all

market structures F ∈ ∆, where ∆ is the set of all partitions of N .

Example 4.1. Consider a market with three products with consumer demand given by:


q1(x)

q2(x)

q3(x)

=


−3 −5 4

−4 −4 3

1 2 −15




x1

x2

x3

+


80

90

80

 (4.5)

Note that the demand is linear, and based on the signs of coefficients in the demand func-

tion, we can see that Products (1 and 2) are complements, while (1 and 3) and (2 and 3)

are substitutes. That is to say, an increase in the price of Product 1 results in decreased
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sales of both Products 1 (as you would expect) and 2 (i.e it is a complement to Product 1),

but an increase of sales of Product 3 (i.e. it is a substitute for Product 1).

The utility functions of the constitutive agents, meaning the three product divisions

that each control a single product, are thus given by

U1 = (−3x1−5x2 +4x3 +80)x1

U2 = (−4x1−4x2 +3x3 +90)x2

U3 = (x1 +2x2−15x3 +80)x3

. (4.6)

Moreover, given any market structure F , the profit-maximizing dynamics of this multi-

agent system then become

ẋ = DF



−3 −4 1

−5 −4 2

4 3 −15


x+q(x). (4.7)

Now, let us compare the market dynamics for two different industrial organizations.

First, we will consider the organization where every product division is its own firm, F =

{1,2,3}. In this case, the dynamics become:

ẋ =


−3 0 0

0 −4 0

0 0 −15

x+q(x)

⇒


ẋ1

ẋ2

ẋ3

=


−6 −5 4

−4 −8 3

1 2 −30




x1

x2

x3

+


80

90

80

 (4.8)
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It is easy to verify that this system has a stable equilibrium at x = (8.91,8.11,3.50) dollars.

The demand at this point becomes q = (26.72,32.42,52.63) units sold per unit time, and

the profits for each firm are U = (238.07,262.93,184.21) dollars per unit time.

Now let’s consider the organization where Divisions 1 and 2 merge to form a single

firm. This market structure is given by F = {(1,2),3}, and the corresponding dynamics

become:

ẋ =


−3 −4 0

−4 −4 0

0 0 −15

x+q(x)

⇒


ẋ1

ẋ2

ẋ3

=


−6 −9 4

−8 −8 3

1 2 −30




x1

x2

x3

+


80

90

80

 (4.9)

From these dynamics, the system equilibrium is at x = (6.40,6.08,3.29) dollars, corre-

sponding to the demand of q = (43.56,49.95,49.21) units sold per unit time and profits for

the two firms of U = (582.48,161.90) dollars per unit time. Nevertheless, since the sys-

tem has a positive eigenvalue 1.5297, this equilibrium point is unstable. As a result, these

equilibrium values are never really attainable, the profits of $582.48 for the merged firm

can not actually be realized, because even small changes in prices will lead, according to

this model, to a never ending price war that never converges. Note that there is no way to

detect a priori that this particular market structure would be unstable with this particular

demand system. The merger of Divisions 1 and 3, for example, corresponding to market

structure F = {(1,3),2}, is stable.
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4.3 Stability Robustness Conditions

Example 4.1 demonstrates how otherwise reasonable models of market dynamics can fail

when considering industrial organization issues. The demand model, which is of sufficient

fidelity to address questions such as the complementary/substitutive relationship between

products, drives the prediction that one possible merger will result in prices going to infin-

ity. In reality, such a merger would not result in continually increasing prices; this result

is simply an artifact of the model we have chosen. As a result, we see that this model is

simply inadequate to describe market dynamics under changes in market structure, at least

for some structures.

Nevertheless, if a model breaks down for some market structures by predicting un-

stable equilibria (or the lack of any equilibria, as happens for constant-elasticity models),

can it be trusted to yield accurate results for any market structure? Whatever simplifica-

tions in the model cause it to drastically fail for some market structures might degrade its

representation of the true dynamics under other market structures. The only safe course is

to identify models that have sufficient fidelity to yield sensible results for every possible

market structure.

Note that verifying the fidelity of a proposed model by checking the stability prop-

erties for all possible market structures is intractable; the number of possible market struc-

tures grows worse than exponential with n, the number of products, and real markets can

involve thousands of products. As a result, we need tractable robustness conditions that can

guarantee existence, uniqueness and stability of equilibria regardless of market structure.

To generate such conditions, we begin by defining the quantities we will use to

check stability robustness of the system (4.4). For notational convenience let F(i) =

F−1(i) denote the firm to which the ith agent belongs. When introducing the lemmas,

we will write Mm,n(F) for the set of all m× n matrices whose entries are elements of the

field F, and we will abbreviate to Mn(F) in the case of square matrices. For any square ma-

trix A ∈Mn(C), we will denote its numerical range as W (A) = {x∗Ax | ‖x‖2 = 1}, and its
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spectrum as σ(A). For a subset S of a vector space, we will write co(S) to denote its convex

hull. For two subsets A and B of a group (G,+), we write A+B = {x+ y | x ∈ A,y ∈ B}.

Lemma 4.1. Given the system (4.4), the Jacobian of the system dynamics, VF , decomposes

as:

JVF (x) =
[
A(x)+DF (AT (x))

]
+BF (x)+CF (x), (4.10)

where A(x), BF (x), and CF (x) are given as follows:

A(x) : Aii(x) = 1
2 ∑

n
j=1

∂ 2U j

∂x2
i
(x), Ai j(x) = ∂ 2Ui

∂xi∂x j
(x) (4.11)

BF (x) : Bii(x) = 0, Bi j(x) = ∑k∈F(i)\{i, j}
∂ 2Uk

∂xi∂x j
(x) (4.12)

CF (x) : Cii(x) =−∑ j/∈F(i)
∂ 2U j

∂x2
i

Ci j(x) = 0 (4.13)

Proof. The diagonal entries of JVF (x) are given by,

Jii(x) =
∂Vi

∂xi
(x) = ∑

j∈F(i)

∂ 2U j

∂x2
i

(x)

=
n

∑
j=1

∂ 2U j

∂x2
i

(x)− ∑
j/∈F(i)

∂ 2U j

∂x2
i

(x)

= 2Aii(x)+Cii(x) = 2Aii(x)+Bii(x)+Cii(x). (4.14)

For j 6= i, the off-diagonal Ji j(x) is given by,

Ji j(x) =
∂Vi

∂x j
(x) = ∑

k∈F(i)

∂ 2Uk

∂xi∂x j
(x)

= ∑
k∈F(i)∩{i, j}

∂ 2Uk

∂xi∂x j
(x)+ ∑

k∈F(i)\{i, j}

∂ 2Uk

∂xi∂x j
(x)

= ∑
k∈F(i)∩{i, j}

∂ 2Uk

∂xi∂x j
(x)+Bi j(x). (4.15)
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When j ∈ F(i), we then have

Ji j(x) =
∂ 2Ui

∂xi∂x j
(x)+

∂ 2U j

∂xi∂x j
(x)+Bi j(x)

= Ai j(x)+A ji(x)+Bi j(x)

= Ai j(x)+A ji(x)+Bi j(x)+Ci j(x). (4.16)

Otherwise, when j /∈ F(i), we then have

Ji j(x) =
∂ 2Ui

∂xi∂x j
(x)+Bi j(x)

= Ai j(x)+Bi j(x)+Ci j(x) (4.17)

Therefore,

JVF (x) =
[
A(x)+DF (AT (x))

]
+BF (x)+CF (x). (4.18)

Definition 4.1. The market structure consisting of a single firm, F = {(1,2, ...,n)}, that

is, where all agents belong to the same coalition, is called the Grand Structure, denoted G ,

and the associated firm is called the Grand Coalition, denoted G.

Lemma 4.2. Given by (4.13) and Definition 4.1, CG (x) = 0.

Proof. This follows directly from the definition of CF in (4.13), where the only nonzero el-

ements are on the diagonal, and the diagonal elements become zero for the Grand Structure

since all agents belong to the same firm.
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Definition 4.2. A function h(x) : Rn→ Rm is said to have network structure if there exist

functions fi j : R2→ R such that

hi(x) =
n

∑
j=1

fi j(xi,x j), i = 1, ...,n. (4.19)

Lemma 4.3. A demand function, q(x) : Rn→ Rn, with network structure induces network

structure on the market utility function given by (4.1).

Proof.

Ui(x) = xiqi(x) = xi

n

∑
j=1

fi j(xi,x j) =
n

∑
j=1

xi fi j(xi,x j) =
n

∑
j=1

f̂i j(xi,x j). (4.20)

Lemma 4.4. If the utility function, U(x), associated with system (4.4) has network struc-

ture, then BF (x) = 0 for all market structures F .

Proof. Network structure of U(x) implies there exist functions fi j : R2 → R such that

Ui(x) = ∑
n
j=1 fi j(xi,x j), i = 1, ...,n. Hence, for k /∈ {i, j},

∂ 2Uk

∂xi∂x j
(x) =

n

∑
l=1

∂ 2 fkl(xk,xl)
∂xi∂x j

=
∂ 2 fki(xk,xi)

∂xi∂x j
+

∂ 2 fk j(xk,x j)
∂xi∂x j

=
∂

∂xi

∂ fki(xk,xi)
∂x j

+
∂

∂x j

∂ fk j(xk,x j)
∂xi

= 0.

Therefore, following from (4.12), BF (x) = 0 for all market structures F .

Definition 4.3. A utility function U(x) : Rn→ Rn is said to be partially convex if,

∂ 2U j

∂x2
i

(x)≥ 0 ∀ j 6= i, ∀x ∈ Rn. (4.21)
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Lemma 4.5. When utility functions of the system (4.4) are partially convex, CF (x) is a

negative semidefinite diagonal matrix.

Proof. From the definition of parital convexity,

∂ 2U j

∂x2
i

(x)≥ 0 ∀ j 6= i, ∀x ∈ Rn.

From the definition of CF , its diagonal elements are Cii(x) =− ∑
j/∈F(i)

∂ 2U j

∂x2
i

(x)≤ 0, and the

off-diagonal elements are zero. Hence CF is a diagonal matrix with non-positive diagonal

elements. Recall that eigenvalues of a diagonal matrix are also its diagonal elements, the

matrix CF has only non-positive eigenvalues. Therefore, CF is negative semidefinite.

Definition 4.4. An n-product market with profit-maximizing dynamics given by (4.4), with

demand function q(x) : Rn → Rn that has network structure, and with partially convex

utility is said to be an industrial organization network for any market structure F .

Definitions 1 through 4 equip the models we will use to represent market dynamics

with the technical structure we will need to guarantee stability robustness for all industrial

organizations. In particular, industrial organization networks provide a model class with

sufficient fidelity to explore questions involving changes in market structure. The following

lemma comes from various parts in [7].

Lemma 4.6. Let A,B ∈Mn(C).

(i) W (A) is compact and convex.

(ii) co
(
σ(A)

)
⊆W (A).

(iii) W (A+B)⊆W (A)+W (B).

(iv) A is normal⇒ co
(
σ(A)

)
= W (A).
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Lemma 4.7. For A ∈Mn(R),

maxW (A+AT ) = maxReW (A)+maxReW (AT ).

Proof. Essentially follows from the definition of numerical range,

maxW (A+AT ) = max
‖x‖2=1,x∈Cn

x∗(A+AT )x

= max
‖x‖2=1,x∈Cn

(
x∗Ax+ x∗AT x

)
= max
‖x‖2=1,x∈Cn

(
x∗Ax+ x∗Ax

)
= 2 max

‖x‖2=1,x∈Cn
Re(x∗Ax) = 2maxReW (A).

Following the same reasoning, maxW (A + AT ) = 2maxReW (AT ), hence maxW (A +

AT ) = maxReW (A)+maxReW (AT ).

The following lemma is from [11].

Lemma 4.8. Given f : Rn→Rn, the equation f (x) = y will have exactly one root for each

y if there exist positive ε,R ∈ R such that for all x ∈ Rn, ‖x‖2 > R,

zT ∂ f
∂x

(x)z≤−ε‖z‖2
2 ∀z ∈ Rn.

Corollary 4.1. Given f : Rn → Rn, the equation f (x) = y will have exactly one root for

each y if there exists positive ε ∈ R such that,

maxReW
(

∂ f
∂x

(x)
)
≤−ε ∀x ∈ Rn.

Proof. For all z ∈ Rn, zT

‖z‖2

∂ f
∂x (x) z

‖z‖2
∈W

(
∂ f
∂x (x)

)
, and also, zT

‖z‖2

∂ f
∂x (x) z

‖z‖2
∈ R, hence

zT

‖z‖2

∂ f
∂x

(x)
z
‖z‖2

∈W
(

∂ f
∂x

(x)
)
∩R⊆ReW

(
∂ f
∂x

(x)
)

.
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Thus, if maxReW
(

∂ f
∂x (x)

)
≤−ε then,

zT

‖z‖2

∂ f
∂x

(x)
z
‖z‖2

≤maxReW
(

∂ f
∂x

(x)
)
≤−ε ⇒ zT ∂ f

∂x
(x)z≤−ε‖z‖2

2,

which satisfies the condition of Lemma 4.8.

Lemma 4.9. For matrix A ∈Mn(R), W
(
DF (A)

)
⊆W (A).

Proof. For F ⊆F = {F1,F2, . . .Fm}, let IF = diagn
i=1 (χF(i)), with χF(·) being the mem-

bership function of F . Note that

DF (A) =
m

∑
k=1

IFkAIFk .

Let w ∈ W
(
DF (A)

)
and let x ∈ Cn such ‖x‖2 = 1 and w = x∗DF (A)x. Since

∑
m
k=1 IFk = I, ∑

m
k=1 IFkx = x, hence

1 = ‖x‖2
2 = x∗x =

(
m

∑
k=1

IFkx

)∗ m

∑
l=1

IFl x =
m

∑
k=1,l=1

x∗IFkIFl x =
m

∑
k=1

x∗I2
Fk

x =
m

∑
k=1
‖IFkx‖2

2.

Let F+ = {F ∈F : IFx 6= 0}. For F ∈F+, let yF = IF x
‖IF x‖2

. Therefore ‖yF‖2 =

1 and IFx = ‖IFx‖2yF .

w = x∗DF (A)x = x∗
(

∑
F∈F

IFAIF

)
x = ∑

F∈F
x∗IFAIFx

= ∑
F∈F

(IFx)∗A(IFx) = ∑
F∈F+

(IFx)∗A(IFx)

= ∑
F∈F+

(‖IFx‖2yF)∗A(‖IFx‖2yF)

= ∑
F∈F+

‖IFx‖2
2(y
∗
FAyF), (4.22)

while ∑F∈F+ ‖IFx‖2
2 = ∑F∈F ‖IFx‖2

2 = 1. Therefore, w is a convex combination of y∗FAyF ,

which are in W (A) because ‖yF‖2 = 1. W (A) is convex (Lemma 4.6)⇒ w ∈W (A).
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These lemmas demonstrate intermediate results that will enable us to provide stabil-

ity robustness conditions for profit-maximizing dynamics under any coalition structure. In

particular, Lemma 8 and Corollary 1 provide the machinery used to guarantee existence and

uniqueness of an equilibrium for every market structure. To demonstrate stability of these

equilibria using Lyapunov’s indirect method, Lemma 1 provides a decomposition of the

Jacobian of the system dynamics that simplify under certain technical assumptions. Lem-

mas 2-5 then invoke these technical assumptions to characterize an industrial organization

network and simplify the expression for the Jacobian of its dynamics. Finally, Lemmas 6,

7, and 9 then yield the machinery to demonstrate how a simple check on the stability of the

Grand Structure dynamics will guarantee stability for all other market structures. We now

state and prove the stability robustness theorem.

Theorem 4.1. Consider an n-product market with agent set N = {1,2, ...,n} and an in-

dustrial organization network characterized by (4.4). Let the Grand Coalition, G, of this

network be given as in Definition 1, with objective function, UG, as specified in (4.2). Un-

der these conditions, then (4.4) will have a unique and stable equilibrium for all F ∈ ∆,

where ∆ is the set of all partitions of N , if there exists positive ε ∈ R such that

maxσ
(
H(x)

)
≤−ε ∀x ∈ Rn, (4.23)

where H(x) is the Hessian matrix of the objective function UG(x).

Proof. Let F be an arbitrary market structure in ∆. Let JVF (x) be the Jacobian matrix of

VF (x) given by (4.4). Following from Lemma 4.1,

JVF (x) =
[
A(x)+DF

(
AT (x)

)]
+BF (x)+CF (x).

The network structure of demand, q(x), and thus also of utility, U(x), then imply that

BF (x) = 0 as shown in Lemma 4.4. In the case that F is the Grand Structure, we know
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from Lemma 4.2 that CG (x) = 0. Thus, JVG (x) = A(x)+AT (x) = H(x). In general, however,

we have JVF = A(x)+DF (AT (x))+CF (x). From Lemma 4.6 this yields,

W (JVF (x)) = W
(
A(x)+DF

(
AT (x)

)
+CF (x)

)
⊆W (A(x))+W

(
DF

(
AT (x)

))
+W (CF (x)).

From Lemma 4.9, W
(
DF

(
AT (x)

))
⊆W

(
AT (x)

)
, hence

W (JVF (x))⊆W (A(x))+W
(
AT (x)

)
+W (CF (x)) .

As a result,

maxReW (JVF (x))≤maxReW (A(x))+ReW
(
AT (x)

)
+maxReW (CF (x)) .

Due to Lemma 4.5, W (CF (x))≤ 0. Also, from Lemma 4.7,

maxReW (A(x))+ReW
(
AT (x)

)
= maxW

(
A(x)+AT (x)

)
= maxW

(
H(x)

)
= maxσ(H(x)).

Following that, maxReW (JVF (x)) ≤ maxσ(H(x)) ≤ −ε. By Corollary 4.1, we can con-

clude that the equation VF (x) = 0 has exactly one solution xe. Hence the market structure

F yields exactly one equilibrium xe. Moreover, since the Jacobian evaluated at the equi-

librium point,JVF (xe), satisfies,

maxReσ(JVF (xe))≤maxReW (JVF (xe))≤−ε < 0,

then the equilibrium xe is locally stable due to Lyapunov’s indirect method.
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4.4 Demand Estimation for Industrial Organization Networks

This section shows how we apply the stability robustness condition in Theorem 4.1 to a

class of AIDS-like demand models. We will begin to cover first our main tool, semidefinite

programming [21] [9], used in finding the model parameters that best fit the data, while

meeting the sufficient condition given in Theorem 4.1.

4.4.1 Semidefinite Programming

In semidefinite programming, one minimizes a convex function subject to the constraint

that an affine combination of symmetric matrices is positive semidefinite. As the authors

of [21] noted, such a constraint is nonlinear and nonsmooth, but convex. In fact, it is shown

in [21] that although semidefinite programs are much more general than linear programs,

they are not much harder to solve. Most interior-point methods for linear programming

have been generalized to semidefinite programs. As in linear programming, these methods

have polynomial worst-case complexity, and perform very well in practice.

Let us show the canonical form of a semidefinite program,

minimize f0(x)

subject to σ

(
Ψ0 +

n

∑
i=1

Ψixi

)
≤ 0, (4.24)

where f0(x) is convex and Ψi are symmetric for i = 0,1, . . . ,n.

4.4.2 Demand Estimation with Stability Robustness Constraint

Now we will show our methodology applying to a class of demand models. Let us first

do so by describing our model, after which we shall show that both the requirements given

in Definition 4.2 and Definition 4.3 are met. This demand model is based on the concept

of effective price: we recognize that changing prices from different price ranges will yield

different effects on demand. Therefore, let fi(xi) be a function representing the effective
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price of product i, our demand function will be,

q = P f (x)+b,where f (x) =
(

f1(x1), f2(x2), . . . , fn(xn)
)
, (4.25)

for some n×n matrix P and n×1 vector b.

Use demand functions given by Equation (4.25)

Let us show that this demand model given in (4.25) satisfies all the assumptions of an

industrial organization network. First, it can be shown that the network assumption in

Definition 4.2 is met, because

qi(x) =
n

∑
j=1

pi j f j(x j). (4.26)

Also the partially convex requirement, as defined in Definition 4.3, is met. For j 6= i,

∂ 2U j

∂x2
i

(x) =
∂ 2[x jq j(x)]

∂x2
i

= x j
∂

∂xi

∂q j(x)
∂xi

= x j
∂

∂xi

(
p ji

∂ f j(x j)
∂xi

)
= 0≥ 0. (4.27)

Use splines to design the effective price functions, f(x), in the demand model

These functions should be monotone and will serve as basis functions in a nonlinear re-

gression when fitting P and b from data. The choice of f(x) can be guided by data or use

professional expertise to characterize price sensitivity in the market.

Substitute the desired effective price functions to build a semidefinite program. Note

that this program samples H(x) to try to enforce that σ(H(x))≤−ε everywhere

This is the most important step in the process. Let us be detailed in showing how it is

carried out. Assuming that we are given K data points (qi,xi), i = 1,2, . . .K, where qi ∈Rn

are quantity demanded at a price setting xi ∈Rn, our objective is to minimize the regression

error. For example, if the regression error is measured by the l2 norm, then we have a least

45



www.manaraa.com

square regression problem,

find P ∈Mn(R),b ∈ Rn to

minimize
K

∑
i=1
‖Pxi +b−qi‖2

2. (4.28)

In addition, we need to ensure that the condition (4.23) is met. This condition needs to be

held for an infinite number of x ∈ Rn. However, by looking carefully at,

H(x) =
∂ 2UG

∂ 2x
=
[

Pdiag
(

d fi

dxi
(x)
)

+diag
(

d fi

dxi
(x)
)

PT
]
+diag

(
∑

j
pi jx j

d2 fi

dx2
i
(x)

)
,

(4.29)

we recognize that if we require that the effective price functions are linear for x ∈ Cn(R) =

{Rn, ‖x‖2 > R} for some radius R, then, H(x) is unchanged for x ∈ Cn(R). Therefore we

only need to meet the constraint (4.23) for a compact ball x∈Bn(R) = {x∈Rn | ‖x‖2≤R}.

In fact, we will make one step further by sampling the points in this ball, so that the number

of points to check is finite. This is often done in practice. So, let S = {sj} be a finite sample

of x ∈Bn(R), constraint (4.23) can be approximated by,

maxσ
(
H(sj)

)
≤−ε ∀sj ∈ S, (4.30)

If we let y =
[

p11 . . . p1n b1 . . . pn1 . . . pnn bn

]T

, Π ∈ MKn,n2+n(R), Π =

diag(Σ,Σ, . . . ,Σ), where Σ ∈MK,n+1,

[Σ]i =
[

f1(xi) . . . fn(xi) 1

]
,
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z =
[

q11 . . . qK1 . . .q1n . . .qKn

]T

, and l = n2 + n, then the regression objective be-

comes,

find y ∈ Rl to

minimize ‖Πy− z‖2
2. (4.31)

Also, let Φi j(s) ∈ Mn(R), Φi j(s) = diagn
i=1(∑s j

∂ 2 fi
∂xi

(si)), Θi j(s) ∈ Mn(R) hav-

ing two non-zero (i, j)th and ( j, i)th entries with value ∂ fi
∂xi

(si), Ψi j ∈ Mn‖S‖(R), Ψi j =

diagsk∈S
[
Φi j(sk)+Θi j(sk)

]
, and Ψ0 ∈ Mn‖S‖(R),Ψ0 = diag(ε,ε, . . .ε), then the regres-

sion constraint becomes

subject to maxσ

[
Ψ0 +

n

∑
i=1, j=1

Ψi jy(n+1)i+ j

]
≤ 0. (4.32)

(4.31) and (4.32) together constitute a semidefinite program.

Solve for y - or equivalently - P and b

Solving the least square semidefinite program in (4.31) and (4.32) yields the network de-

mand function, q(x), that best fits the data, and guarantees that the conditions from Theorem

4.1 on H(x) that guarantee stability robustness for all market structures are met.

4.4.3 Numerical Experiment

Consider 100 data points generated by the log-linear model,

logq(x) =


−0.57 0.10 −0.12

0.20 −1.00 0.11

−0.02 0.06 −0.68

 logx+


7

7

7

+w, (4.33)
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Figure 4.1: Plot showing price sensitivity: a spline going through points (5,19), (20,47),
(35,56), and (50,61).
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Figure 4.2: Plot showing the histogram of residuals. The top one is the histogram residual
values, while the bottom shows a histogram of absolute residuals. These results indicate
that the industrial organization network model fits the data extremely well.
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where w is white noise with standard deviation 1. We choose fi(·) to be the same function

for each dimension: a spline going through (5,19), (20,47), (35,56), and (50,61) (we

chose these points by looking at the generated data, and roughly estimating the effects of

different price ranges on demand.) A plot showing this spline is shown in Figure 4.1.

Based on this spline, we perform a semidefinite regression to fit the demand func-

tion q = A f (x) + b while meeting the robustness condition. The optimal parameters be-

come:

q(x) =


−5.70 0.96 −1.23

1.96 −10.00 1.17

−0.24 0.59 −6.82

 f (x)+


481.22

636.45

563.00

 . (4.34)

These matrices do not look quite the same as the matrices in the original model because

our regression model is not in logarithm scale. To see how our model fits the demand,

we plot of percentage difference of demands between our regression model and the log-

linear model in Figure 4.2. Since we have 100 data points, and each data point reflects the

demand of three different products, we show in our plot the histogram of 300 differences,

and the histogram of 300 absolute error. While the demanded quantities range between 150

and 400 units, the differences range between 0 and 12 units. For 90% of the data points,

the difference is less than 1.5 percent. The maximal difference is about 3.5 percent. Our

model fits the data quite well, but more importantly, it guarantees existence, uniqueness,

and stability of equilibriums under all market structures.

Note also see that the complementary/substitutive relationships between different

products are also preserved. In the log-linear model, we see that the pairs of products 1

and 2, and 2 and 3 are substitutes, while products 1 and 3 are complements. This is also

reflected by the sign of elements of P.

Finally, we show how our demand model reflects own-price demand by plotting qi

with respect to xi, while fixing both other two prices at 20. The shape looks quite realistic
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Figure 4.3: Demand plots of each product with respect to its own price, fixing the other
two prices at 20. The solid lines plot our demand functions, and the dashed lines plot the
loglinear demand functions.
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(Figure 4.3), as it shows a decreasing function that gets flatter when price increases, reflect-

ing the law of diminishing returns. These results suggest the method is quite practical.

We also show the log linear demand function in the same plot. The difference

between our demand function and the log linear demand function is when price is close to

0, and due to nature of logarithm, log-linear demand increases exponentially fast.

4.5 Global Stability 2

In this section, we will extend the result in Theorem 4.1 significantly by showing that the

stability robustness condition will not only guarantee local stability, but in fact also yield

global stability for all coalition structures.

Proposition 4.1. A system given by

ẋ = f (x) (4.35)

with f : Rn→ Rn is globally exponentially stable if

∃ε > 0 ∀x ∈ Rn ReW
(

∂ f
∂x

(x)
)
≤−ε. (4.36)

Proof. We will write ‖·‖ to denotes the L2 norm. Notice that since we are working with

real vectors as x, f (x) ∈Rn, for clarity we will use the transpose operator xT in place of the

conjugate transpose operator x∗ as these are only different in a complex vector space. For

convenience, we write x to mean x(t), the system state vector at time t and x0 to mean x(0),

the initial state vector of the system.

From Corollary 4.1, there exists xe such that f (xe) = 0. Let V (x) = ‖x− xe‖2 =

(x− xe)T (x− xe). We shall prove that V (x) is exponentially decreasing to 0.

2This result was not a part of [18].
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Taking the derivative

V̇ (x) =
d
dt

(x− xe)T (x− xe)+(x− xe)T d
dt

(x− xe) = 2(x− xe)T f (x). (4.37)

Let L be the line segment y(s) = s(x− xe)+ xe with s ∈ [0,1] connecting xe and x. Thus,

dy = (x− xe)ds. Using the fundamental theorem of calculus for line integrals, we can

compute f (x) from ∂ f
∂x (y(s)) with s ∈ [0,1].

f (x) = f (xe)+
∫

L

∂ f
∂x

(y)dy =
∫ 1

0

∂ f
∂x

(y(s))(x− xe)ds. (4.38)

Hence

V̇ (x) = 2
∫ 1

0
(x− xe)T ∂ f

∂x
(y(s))(x− xe)ds

= 2
∫ 1

0

(x− xe)T

‖x− xe‖
∂ f
∂x

(y(s))
x− xe

‖x− xe‖
‖x− xe‖2ds

≤ 2
∫ 1

0
maxReW

(
∂ f
∂x

(y(s))
)
‖x− xe‖2ds

≤−2
∫ 1

0
ε‖x− xe‖2ds =−2

(∫ 1

0
εds
)

V (x) =−2εV (x). (4.39)

Thus
V̇ (x)
V (x)

≤−2ε⇒ log
(

V (x)
V (x0)

)
≤−2εt⇒V (x)≤V (x0)exp(−2εt). Therefore x→ xe

when t→ ∞.

Applying the above proposition to the proof of Theorem 4.1, it is now proven that

the coalition stability-robustness condition in (4.23) guarantees global stability for all coali-

tion structures.

4.6 Conclusion

In this chapter we demonstrated stability robustness conditions with respect to coalition

structure for a class of profit-maximizing nonlinear systems. These conditions were then

53



www.manaraa.com

leveraged to provide a systematic methodology for estimating a rich variety of demand

systems from data that guarantee sensible stability results regardless of the structure of

cooperation within the marketplace.

The importance of these results emerges from the ability for regulators and man-

agers alike to reliably conduct market power analyses using merger simulation and reverse

merger simulation techniques. In such studies one can compute, for example, the value of

cooperation of a firm as a measure of its market power.
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Chapter 5

Conclusion and Future Work

5.1 Summary

In this thesis we laid a foundation towards a theory of coalition stability and robustness for

multiagent systems. After showing some practical applications that motivated and stemmed

the theory, we built up our results based on ideas from control theory and cooperative game

theory to lead to a stability robustness condition. We then applied this condition to form a

methodology to evaluate cooperation for market structure analysis.

Our first practical application was to quantify the value of cooperation. Quantifying

the value of cooperation is a first step in understanding how firms exert market power in

their respective environments. This information is important for both managers, who hope

to leverage the information to better lead their organizations, and regulators, who want to

monitor the impact of corporate decisions on social welfare.

We have illustrated the use of the value of cooperation for product clustering in the

context of optimal organizational design as our second practical application. We proposed

to do this through the use of the value of cooperation within a hierarchical agglomerative

clustering framework.VC-based hierarchical agglomerative clustering starts from the ref-

erence structure, where all products were assumed to act independently. Then, the two

products which exhibit the strongest value of cooperation were merged, and the process is

repeated, decreasing the total number of clusters by one until all of the firms products are

finally merged into a single organizational structure. The hierarchical nesting added a nat-
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ural constraint to the problem, which yields a product hierarchy with a clear organizational

interpretation.

In both of these applications, we relied on equilibrium results, which in turn re-

quired a theoretical understanding of stability of the systems under various coalitional

structures. Using ideas from control theory and cooperative game theory, we demon-

strated stability robustness conditions with respect to coalition structure for a class of profit-

maximizing nonlinear systems. These conditions were then leveraged to provide a system-

atic methodology for estimating a rich variety of demand systems from data that guarantee

sensible stability results regardless of the structure of cooperation within the marketplace.

Finally we added an extension to the theory, by strengthening the stability into

global exponential stability, a much stronger type of stability without adding additional

constraint to our coalition robustness condition. Global stability is important because it

guarantees that the system will end up at its unique equilibrium state without regard to

its initial condition, which gives the equilibrium state more meaning and authority as a

reference state to represent the system itself.

5.2 Future Work

Discrete systems can be viewed as approximations of continuous system where the state

is asummed constant in each time interval. On the other hand, continuous systems can be

considered as the limits of discrete systems when the unit interval shrink to infinitesimal

length. Many stability results, for example the Lyapunov indirect methods, apply both

for discrete and continous systems. Due to this duality between discrete and continuous

systems, we expect our theory to apply to discrete systems as well. In order to do this, we

will need to formulate our framework in a discrete way: at each point in time each agent can

choose the best actions given the current state of the system, and move accordingly. These

types of system may be more realistic than continuous systems in applications where the

outcomes are clear enough for decision makers to choose the optimal move each time.
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We are also interested in leveraging the coalition robustness condition to design

multiagents systems that benefits from having dynamic coalitions between agents. For ex-

ample, we may be interested UAVs that may work in teams when they are within range of

each others and change team structures when they are out of range. Another example would

be distributed optimization systems that decompose the objective functions into parts and

distribute the parts to coalitions of machines within the same local network to optimize lo-

cally. With a carefully design of the objective function we can guarantee stability regardless

of what coalitions are formed. That would in turn result in robust and flexible multiagent

systems.

Finally, we also want to check these conditions in real firms and markets. We would

like to know whether our coalition robustness condition is realistic; whether real application

meet the condition; and in case they do not meet the condition, what would the implication

be? A practical implementation of these theoretical results will play an important role in

our future study to answer these questions.
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